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We describe the results of a molecular epidemiological survey of 15 carbapenemase-encoding genes from a recent collection of
clinical isolates from Mercy Hospital in Bo, Sierra Leone. The most salient findings revealed that (i) 60% of the isolates harbored
multiple carbapenemase genes; (ii) the blaDIM-1 gene, which has previously only been reported in The Netherlands, is also circu-
lating in this environment; and (iii) blaOXA-51-like and blaOXA-58 genes, which were thought to reside exclusively in Acinetobacter
species, can also be found in members of the Enterobacteriaceae.

Carbapenem antibiotics are currently the most potent �-lactam
antibiotics clinically available and are used as a last resort to

treat infections caused by multidrug-resistant Gram-negative
pathogens. The significance and usage of this family of antibiotics
have risen dramatically over the last decade, especially in hospital
settings, due to the global spread and increasing prevalence of
bacterial pathogens that harbor extended-spectrum �-lactamase
genes that confer resistance to all �-lactam compounds except for
carbapenems (1). Not surprisingly, the positive selection pressure
provided by the increased usage of carbapenems has resulted in
the emergence and expansion of carbapenem resistance in a num-
ber of common nosocomial pathogenic species (1).

Carbapenem resistance is mediated mostly by �-lactamase
enzymes that are capable of hydrolyzing carbapenem com-
pounds (carbapenemases) and often differ in host microorgan-
ism range, substrate specificity, and �-lactamase inhibitor sen-
sitivity (2, 3). Furthermore, carbapenemases are frequently
found in pathogenic strains that contain additional genetic de-
terminants that confer resistance to aminoglycosides, tetracy-
clines, �-lactams, and fluoroquinolones and can result in in-
tractable infections with high mortality rates (4, 5). The spread
of Ambler class A, B, and D carbapenemase genes, which were
encountered only rarely less than 2 decades ago, has been facil-
itated by conjugative plasmids, transposons, and integrons to
such an extent that carbapenemase genes have now been re-
ported worldwide (2). Despite this fact and the clinical impact
of these genes, the true incidence and prevalence of carbap-
enem resistance and carbapenemase genes are still unknown, as
many countries do not track and report antibiotic resistance
rates; this is particularly true in many African countries (1).

To better understand the level, distribution, and evolution of
multidrug resistance in environments that currently lack a na-
tional antibiotic stewardship policy, we initiated a molecular epi-
demiology surveillance program at Mercy Hospital in Bo, Sierra
Leone. The preliminary evidence, obtained using an antimicrobial
resistance determinant microarray as a screening tool (6), indi-
cated the presence of class B metallo-�-lactamase (MBL) and class
D carbapenem-hydrolyzing �-lactamase (CHDL) genes in this

environment. In this study, we utilized PCR and DNA sequencing
to target 15 carbapenemase genes (blaOXA-23, blaOXA-24, blaOXA-48,
blaOXA-51-like, blaOXA-58-like, blaAIM, blaBIC, blaDIM, blaGIM, blaIMP,
blaKPC, blaNDM, blaSIM, blaSMP, and blaVIM) from a recent collec-
tion of Mercy Hospital isolates to better understand the carbap-
enemase content of actively circulating strains. Ethical approval
was obtained from the Njala University Institutional Review
Board. All clinical samples were obtained from Mercy Hospital as
preexisting diagnostic specimens that had been stripped of all
identifiers. The Gram-negative clinical isolates analyzed (n � 20)
were collected from November 2010 to April 2011 on agar media
and then identified based on PCR amplification and sequencing of
a 16S rRNA gene amplicon that spanned the V3 and V4 variable
regions (7) and of the rpoB and/or gyrA gene, as previously de-
scribed (8, 9). For a preliminary identification, the obtained 16S
rRNA gene sequences were used to classify each isolate by using
the naive Bayesian classifier available through the Ribosomal
Database Project (release 10) (http://rdp.cme.msu.edu/classifier
/classifier.jsp), with �80% confidence as the identification thresh-
old (10). This analysis identified 70% of the isolates as members of
the Enterobacteriaceae, with the remaining isolates belonging to
the Pseudomonadaceae, Burkholderiaceae, or Comamonadaceae.
Secondary identifications based on rpoB or gyrA gene sequencing
not only confirmed the 16S rRNA gene identifications but also
provided genus- and species-level resolution to reveal well-known
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nosocomial pathogens (Enterobacter cloacae, Escherichia coli, and
Klebsiella pneumoniae). In addition, the genomic DNA from one
strain (SL-1) was subjected to low-pass whole-genome sequencing
using an Illumina HiSeq 2000 sequencer (Illumina, San Diego,
CA), and the assembled and annotated draft sequences were
mined for carbapenemase genes and their flanking regions.

Targeted PCR analyses were performed using previously de-
scribed primers and conditions (11, 12), and selected amplicons
were sequenced for allele confirmation. Importantly, 11 of the 15
targeted carbapenemase genes (blaOXA-23, blaOXA-24, blaOXA-48,
blaAIM, blaBIC, blaGIM, blaIMP, blaKPC, blaNDM, blaSIM, and blaSMP)
were not detected in any of the isolates tested. However, the re-
maining targeted Ambler class B (blaVIM and blaDIM-1) and D
(blaOXA-51-like and blaOXA-58-like) carbapenemase genes were de-
tected and codetected in a surprising number of strains (Table 1).
In fact, 60% of the tested isolates harbored multiple carbapen-
emase genes.

Perhaps even more surprising was the detection of the
blaOXA-58-like and blaOXA-51-like CHDL genes in 85% and 40% of the
isolates, respectively, as these genes were thought to reside exclu-
sively in Acinetobacter species. While blaOXA-58-like genes are
known to reside on conjugative plasmids in Acinetobacter spp., the
blaOXA-51-like genes have been considered exclusively chromo-
somally encoded, intrinsic oxacillinase genes of Acinetobacter bau-
mannii and are used by many investigators for species identifica-
tion and strain typing (2, 13, 14). However, a number of recent
reports indicate that the blaOXA-51-like genes have been mobilized
and are spreading to other Acinetobacter spp. by conjugative plas-
mids (15, 16). Our findings bolster this contention and corrobo-

rate a recent meeting abstract that describes the presence of
blaOXA-51-like and blaOXA-58-like genes in Klebsiella pneumoniae and
Escherichia coli isolates, respectively (17). Furthermore, an analy-
sis of the SL-1 draft genome sequence identified this strain as an
Enterobacter cloacae isolate that harbored a complete blaOXA-58

open reading frame surrounded by flanking sequences that were
100% identical to ISAba3, found in a number of Acinetobacter
plasmids (GenBank accession no. KC004135). Taken together, the
results demonstrate the presence of the blaOXA-58 and blaOXA-51-like

carbapenemase genes in non-Acinetobacter Gram-negative genera
and suggest that these genes should no longer be considered ge-
netic determinants that can be used for the specific identification
of Acinetobacter species.

The blaOXA-51-like genes were detected in eight isolates (Table
1). Previously published primers (primers OXA-51-likeF and
OXA-51-likeR [12] and primers 5=OXA-51-like-all-F and 3=OXA-
51-like-all-R [18]) were used to amplify and sequence these genes
for allelic identification and to determine the presence of flanking
ISAba1 sequences (using primers ISAba1F [18] and OXA-51-
likeR). The obtained sequences were screened against a database
of �80 currently known blaOXA-51-like genes, and a total of five
different blaOXA-51-like variants were found (see Fig. S1 in the sup-
plemental material). Nearly full-length sequences (94% of the en-
tire gene) of the blaOXA-51-like variants revealed the presence of
OXA-64 (strain SL-1), OXA-65 (strain SL-5), and OXA-98
(strains SL-9, SL-13, SL-14, and SL-15) genes. For two of the
strains (SL-11 and SL-12), it was only possible to amplify and
sequence �30% of the gene. Although greater sequence coverage
is needed for unambiguous identification of these variants, the

TABLE 1 Summary of carbapenemase gene-containing hospital isolates in Bo, Sierra Leone

Strain
16S rRNA gene identification
(% confidence)a

rpoB or gyrA identification
(% identity to reference sequence)

Presence of gene

blaOXA-51-like
d blaOXA-58-like

e blaVIM blaDIM

SL-1 Enterobacteriaceae (100) Enterobacter cloacaeb (100) 64 58 � �
SL-3 Enterobacteriaceae (100) Enterobacter cloacaeb (100) � � � �
SL-4 Pseudomonas (93) Comamonas testosteronic (100) � 58 � �
SL-5 Escherichia/Shigella (98) Escherichia colib (100) 65 58 �f �
SL-6 Escherichia/Shigella (100) No amplification � � � �
SL-7 Enterobacteriaceae (80) Enterobacter cloacaeb (98) � 58 � �
SL-8 Enterobacteriaceae (100) No amplification � � �f �
SL-9 Enterobacteriaceae (100) Enterobacter cloacaeb (100) 98 58 � �
SL-10 Enterobacter (80) Enterobacter sp.c (90) � 58 � �
SL-11 Klebsiella (99) Klebsiella pneumoniaeb (100) 71g 58 �f �
SL-12 Klebsiella (98) Klebsiella pneumoniaeb (100) 71 or 241 � �f �
SL-13 Klebsiella (98) Klebsiella pneumoniaeb (99) 98 58 � �
SL-14 Providencia (100) No amplification 98 58 � �
SL-15 Enterobacteriaceae (100) Enterobacter cloacaeb (97) 98 58 �f �
SL-16 Klebsiella (100) Klebsiella pneumoniaeb (99) � 58 � �
SL-18 Pseudomonas (100) No amplification � 58 � �
SL-19 Burkholderia (100) No amplification � 58 � �f

SL-20 Delftia (97) Delftia acidovoransc (99) � 58 � �
SL-21 Burkholderia (100) No amplification � 58 � �
SL-22 Pseudomonadaceae (100) No amplification � 58 � �
a Derived from 16S rRNA gene sequencing. All identifications are family- or genus-level identifications.
b Derived from rpoB gene sequencing using the methods of Mollet et al. (8). All identifications are genus- and species-level identifications.
c Derived from gyrA gene sequencing using the methods of Tayeb et al. (9). All identifications are genus- and species-level identifications.
d Numbers indicate the identified OXA-51-like variant. The variants were identified using 94% of the complete gene sequence in all cases except for SL-11 and SL-12, for which
�30% of the gene sequence was obtained.
e Numbers indicate the identified OXA-58-like variant. The variants were identified using 56% of the complete gene sequence in all cases.
f The obtained amplicon was not sequenced. All other amplicons lacking this designation were confirmed by DNA sequencing.
g Identified as a new variant of OXA-71.
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obtained sequence information was sufficient to determine that
the blaOXA-51-like gene in SL-11 contained a novel combination of
single nucleotide polymorphisms (SNPs) that warranted its clas-
sification as a new variant of the OXA-71 gene. The same amount
of sequence information also revealed that the blaOXA-51-like gene
found in strain SL-12 matched either the OXA-71 or OXA-241
gene. ISAba1 insertion sequences were detected in each of the
blaOXA-51-like gene-containing isolates, but they were not found flank-
ing the blaOXA-51-like genes. Similar analyses were performed to deter-
mine the allelic identity of the 16 blaOXA-58-like genes that were de-
tected in these isolates. Only two different sequence variants were
identified, with one present in strains SL-1 and SL-11 and the other in
all of the remaining positive samples. The variants differed by two
SNPs (see Fig. S2), both of which generated silent mutations. The
deduced amino acid sequences for both variants were identical and
matched exactly with the OXA-58 sequence.

In addition to the CHDL genes, two MBL genes were also iden-
tified among the tested isolates. Sixty percent of the isolates carried
identical blaVIM sequences (which, based on the amplicon se-
quence, were consistent with blaVIM-2 or four other, less frequently
observed variants: blaVIM-10, blaVIM-16, blaVIM-17, and blaVIM-30),
and 40% of the isolates were found to contain blaDIM-1. While
blaVIM (and especially blaVIM-2) is acknowledged as one of the
most commonly isolated MBLs in Africa and throughout the
world (19–22), the presence of blaDIM-1 has been reported only
once before, for a Pseudomonas stutzeri isolate from The Nether-
lands (23). In this study, blaDIM-1 was found in hospital isolates
belonging to the families Enterobacteriaceae, Pseudomonadaceae,
Burkholderiaceae, and Comamonadaceae. Importantly, the com-
plete blaDIM-1 gene sequence was also found within the SL-1 draft
genome and was found to be flanked by sequences consistent with
a type 1 integron (GenBank accession no. KC004136).

In this study, we have presented the first molecular epidemio-
logical survey of carbapenemase genes in West Africa. With re-
spect to antimicrobial resistance determinants, this is a wholly
uncharacterized environment. It is also an especially challenging
environment in that the lack of surveillance coincides with easy
over-the-counter access to the most commercially available anti-
biotics, little to no usage oversight, low-level awareness of infec-
tion control practices, and the absence of a national antibiotic
stewardship policy. To begin to ascertain whether these factors
may have played a role as the selection pressure that led to these
findings, we conducted a voluntary survey of 15 independent
pharmacies and 5 hospital dispensaries (including Mercy Hospi-
tal) to determine the availability of antimicrobial compounds in
Bo, Sierra Leone. While none of the hospital dispensaries issued
antibiotics without a prescription, 87% of the pharmacies that had
access to the same collection of antibiotics as the hospital dispen-
saries acknowledged readily dispensing antimicrobial drugs with-
out a prescription. Interestingly, none of the survey participants
acknowledged issuing the carbapenem antibiotics imipenem-
cilastatin, meropenem, ertapenem, and doripenem, and the avail-
ability and use of carbapenem antibiotics have not previously been
reported for this region. However, �-lactam antibiotics such as
amoxicillin, ampicillin, cloxacillin, and, to a lesser extent, penicil-
lin, cefuroxime, and ceftriaxone were readily issued (as were anti-
biotics from other classes, such as chloramphenicol, ciprofloxa-
cin, clarithromycin, cotrimoxazole, doxycycline, erythromycin,
metronidazole, gentamicin, rifampin, tetracycline, ofloxacin, and
nitrofurantoin). Overall, the survey suggested that antibiotics in

general are available and in use for self-treatment without a pre-
scription or any professional supervision. Thus, while the selec-
tion pressure for the maintenance of the carbapenemase genes
identified in this study does not appear to be due to the indiscrim-
inate use of carbapenem antibiotics per se, it is possible that these
alleles are maintained in this population due to the use of �-lac-
tam antibiotics or their genetic linkage to other elements that may
provide a more direct selective advantage. Furthermore, similar
queries of antibiotic usage for veterinary medicine and food ani-
mal production have not been conducted in this environment and
thus cannot be dismissed as the source of such selection pressure.

The serious implications of the dissemination of carbapen-
emase genes has led to the assertion that the early identification of
strains containing these molecular determinants is necessary for
effective infection control measures and informed therapeutic op-
tions (4, 24). Although it cannot be presumed that the presence of
class D carbapenemase genes within genetic backgrounds other
than Acinetobacter will result in high resistance to carbapenem
antibiotics (13, 25, 26), these findings clearly demonstrate a
broadening reservoir for these resistance determinants. Taken to-
gether and considering the needs, resources, and level of existing
characterization of this environment, our findings warrant the
continued use of molecular tools to better understand the scope,
severity, and evolution of carbapenemase gene circulation and
multidrug resistance in this part of the world.

Nucleotide sequence accession numbers. Newly determined
nucleotide sequences have been deposited in GenBank under ac-
cession numbers KC004135 and KC004136.
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